
Mining Semantic Relations using NetFlow
Alexandru Caracaş, Andreas Kind, Dieter Gantenbein

{xan,ank,dga}@zurich.ibm.com
Stefan Fussenegger

stf@molindo.at
Dimitrios Dechouniotis
ddexouni@ece.upatras.gr

Abstract—Knowing the dependencies among computing assets
and services provides insights into the computing and busi-
ness landscape, therefore, facilitating low-risk timely changes in
support of a business-driven IT management. In general, the
results of a dependency analysis can be used for infrastructure
reengineering, show evidence of policy and process compliance,
and support assessments of business resilience. Current passive
discovery approaches using network monitoring analyze only
direct communication between assets and provide just a single-
link mesh view. This work introduces a new algorithm based on
NetFlow data preprocessed by the Aurora system developed at
IBM Research to create a dependency model of the network. The
algorithm uses time-based event correlation and the data mining
concept of association rules to detect and classify dependencies
that span two or more components. The advantages of the
algorithm is that no access credentials are required and no
packet payload inspection is performed. The suggested algorithm
populates and maintains a dependency model of an observed
network that describes dependencies among computer systems,
software components, and services. The model combines the
mined association rules that express relations between flows
into dependencies, which are given intuitive semantics. Tests
with simulated and authentic data prove the accuracy of the
dependency mining algorithm.

I. INTRODUCTION

There lies a high benefit for IT systems management in
knowing the dependencies among assets and services: better
insights into the computing and business landscape facilitat-
ing low-risk timely changes in support of a business-driven
IT management. However, accurate discovery of meaningful
dependencies among computing assets is a challenging task.

There are two main approaches to discover asset dependen-
cies: active querying of assets and monitoring network traffic.
Both approaches have shortcomings: obtaining credentials for
active discovery using remote access to hundreds of machines
is challenging and time consuming. Current passive discovery
approaches using network monitoring analyze only direct
communication between assets and provide merely a single-
link mesh view. Most products deal with the gathering and
reconciliation of dependency information from various data
sources, partially restricted access to networked components
hinders the creation of complete end-to-end dependency mod-
els. In this case, monitoring the network represents a promising
source of complementary information.

Our contribution is a new algorithm employing passive
network monitoring techniques based on NetFlow, requiring
no access credentials, and which does not inspect packet pay-
loads, hence, suitable also for encrypted traffic. The algorithm
facilitates creating a dependency model of assets and services
with relations spanning multiple components. Information

obtained from the algorithm enhances detailed inventories of
assets and services obtained from active discovery. We use
NetFlow to surface network information which complements
typical systems management data sources when the data
discovered requires more complete and accurate information
despite partial lack of access to certain application servers.

Figure 1 shows two systems on the left-hand side that
communicate to the services running on ports 80 and 345 on
the center system. The center system acts as a relay and uses
the two systems on the right-hand side. The top right system is
going to be stopped for maintenance. Based only on raw traffic
data, it is not possible to determine which of the applications
on the left-hand side will be affected by this action. Using the
dependency detection algorithm one can infer which of the
two servers will be affected.

Fig. 1. Unknown affected servers based on raw monitoring.

Figure 2 depicts a possible result of the dependency anal-
ysis, which shows that only the upper left system is affected
by the stopping of the right-hand system.

Fig. 2. Inference of affected servers based on dependency analysis.

II. DEPENDENCY MINING

Previous work [2] introduced the basic technique use of
NetFlow to passively discover dependencies based on time-
series correlated events. The work in [1] refined the initial
ideas by using a fuzzy inference engine to distinguish mean-
ingful relationships from noise. However, both techniques fail
short if the communication is heavily aggregated (overlapping
NetFlow events) as in the Figure 3.

A. Algorithm Idea

Our main algorithm idea is to identify correlated events and
create association rules between pairs of flows in a dependency



User 1

Service 1 Service 2
Pipelining

User 2

User 3

Fig. 3. Aggregation Problem

model. We extended the definition of correlated events from
[2] to account for overlapping events (using both start and end
times), see Figure 4. Such correlated events are then used to
determine association rules of the form f1 ⇒ f2. In natural
language, the rule states that if events from a flow f1 are
observed then those events are correlated with events from
flow f2 with a certain accuracy and correlation values.

Fig. 4. Example of flow pairs

The accuracy of a rule is the number of instances that
the rule predicts correctly, expressed as a proportion of all
instances it applies to. The coverage of an association rule is
the number of instances for which its prediction is correct [3].

Considering the example in Figure 4, the rule f1 ⇒ f2 has
a coverage of 1 and an accuracy of 0.5. For the rule f2 ⇒ f1,
the coverage is 2 and the accuracy is 0.67.

Based on the validity of association rules involving pairs
of flows, we define semantic classes for relationship such
as strong dependency and conditional dependency. Associa-
tion rules are a powerful concept and are easily extensible
to include boolean operators combining several flows, thus
creating flow chains which show end-to-end business level
semantic relationships. The full description of the algorithm
for mining dependencies with combination of association rules
and evaluation results will be published in full paper.

B. Implementation and Evaluation

The dependency mining algorithm is implemented in Java
as a service with a loose coupling between input and output.
There are several methods of feeding the algorithm with
NetFlow data. The most important design and implementation
consideration allows the algorithm to run continuously. For
this purpose in-memory data structures are used to keep track
of valid flow pairs. For each new flow event the statistics are
updated. The resulting dependency rules can be queried at
any time, and the results can be exported in various plain text
formats or XML.

1) Example Results: The following shows an example
dependency rule output in XML format. The dependency has
a length of 2 and connects three end-points (or components)

with a strong dependency semantic. The rule states that if a
flow is observed from 10.0.0.1 to 10.0.0.3 on port 80, in 87.1%
of the 27 instances of this observed flow, a flow from 10.0.0.3
to 10.0.0.4 on port 389 will be observed.

<dependency l e n g t h =” 2 ” v a l i d =” t r u e ” c o v e r a g e =” 27 ”
a c c u r a c y =” 0 .871 ” semant ic =” s t r o n g ”>

<component i d r e f =” 0 : 1 0 . 0 . 0 . 1 ” />
<component i d r e f =” 0 : 1 0 . 0 . 0 . 3 : t c p / 8 0 ” />
<component i d r e f =” 0 : 1 0 . 0 . 0 . 4 : t c p /389 ” />

</ dependency>

The above rule shows evidence to support the business
scenario described in the introduction by surfacing a strong
dependency between assets.

An important remark is that new algorithm produces more
false positives if the frequency of flow events is high. However,
we argue that false positives can be preferred, for instance,
when applied to business impact and root cause analysis.

Our approach produces the same correct results as the
algorithm presented in [1]. Namely, we detect all known
correlated flows with a very high confidence (on average 0.95)
value and a coverage equal to the number of known introduced
correlated event flows. The algorithm is able to converge
quickly and identify dependencies with a high accuracy and
coverage values based on the thresholds set.

III. SUMMARY

We presented a new algorithm for dependency discovery
using NetFlow data based on the ideas of Kind et al. [2],
who suggested a dependency discovery algorithm using cor-
relation of flow events. The new algorithm uses association
rule mining, in which every dependency is backed by four
different association rules. A lookup-table was devised in
which every possible combination of rules is assigned to a
semantic class. Besides determining whether a dependency
exists, these semantic classes also allow conclusions about
the dependency type. The dependencies discovered provide
transparent assessment of business resilience and support
timely business reengineering decisions.

One important finding is that a comprehensive, more ac-
curate solution for dependency discovery requires knowledge
from multiple sources using different techniques such as active
discovery. By using an integrated approach, it would be
possible to reconcile running software components with the
dependencies discovered. For example, more than one port
could be assigned to a software component, which would
significantly reduce the number of actual dependencies.

REFERENCES

[1] D. Dechouniotis, X. A. Dimitropoulos, A. Kind, and S. Denazis. Depen-
dency detection using a fuzzy engine. In Proc. of the 18th IFIP/IEEE
International Workshop on Distributed Systems: Operations and Manage-
ment, DSOM, volume 4785 of LNCS, pages 110–121. Springer, 2007.

[2] A. Kind, D. Gantenbein, and H. Etoh. Relationship discovery with
NetFlow to enable business-driven IT management. In Proceedings
of Business-Driven IT Manageent (BDIM’06), pages 63–70, December
2006.

[3] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning
Tools and Techniques with Java Implementations. Morgan Kaufmann,
October 1999.


